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1. SUMMARY 
 This report summarizes our effort towards building a robust open-set speaker recognition 
system. 
 In Section 2, we introduce the structure of speaker recognition systems, the databases we 
have used in our experiments, and the evaluation criteria we used to evaluate the results. 
 In Section 3, we review the various techniques we have used for acoustic feature 
extraction. First we review the acoustic features and pre-/post-processing techniques, and 
propose a PPMD feature that combines their advantages. Next, we elaborate on a number of 
speaker modeling and scoring methods, including GMM modeling, SVM modeling, and joint 
factor analysis (JFA). We also introduce some score normalization techniques. 
 In Section 4 we present experiment results. The experiments compare the performances 
of various acoustic features and pre-/post-processing techniques, and show that PPMD 
achieves a better performance than other features. The experiments also show that SVM 
speaker modeling is both better and faster than GMM modeling, and T-norm of the scores 
improves open-set speaker identification performance on the ROSSI database. 
 The report is concluded in Section 5. 

2. INTRODUCTION 

2.1 Block Diagram of Speaker Recognition Systems 

Background 
Features

Target
Features

Trial
Features

Score fusion
and/or normalization

Answers

Background 
Utterances

Target 
Utterances

Trial 
Utterances

UBM

Target
GMMs

Trial
GMMs

Score Table Score Table

SVM-negative 
Features

SVM-negative 
Utterances

SVM-negative
GMMs

Target
SVMs

Decision
Strategy

 

Figure 1. Block Diagram of a Typical Speaker Recognition System 
(Dotted Blocks and Arrows Denote Modules Special to SVM Speaker Modeling) 
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 Figure 1 is the block diagram of a typical speaker recognition system. A complete run of 
the system consists of the following steps: 

(0) Voice activity detection (VAD). This is a preliminary step in which the 
speech-containing regions are located in the utterance. Usually people don’t spend too much 
effort here; they usually just apply an energy-based threshold on the frames. We determine the 
threshold by clustering the log-energy values of the frames in an utterance into 2 clusters 
using the k-means algorithm. 

(1) Feature extraction. This turns the speech-containing regions into sequences of 
feature vectors. We have investigated lots of features (MFCC, MHEC, WMVDR, Multitaper 
MFCC, SCF & SCM, HSCC, FFV, DSCC) and pre-/post-processing techniques 
(pre-emphasis, LP, CMN, RASTA, Gaussianization, delta features). Feature fusion also goes 
here. 

(2) UBM training. A universal background model (UBM) is trained from some 
background utterances. The UBM will be useful in the MAP training during speaker 
enrollment, and may also act as a reference in scoring. 

(3) Speaker enrollment and modeling. The traditional method of modeling target 
speakers is Gaussian mixture modeling. A Gaussian mixture model (GMM) is either trained 
independently or adapted from the UBM for each target speaker. Common adaptation 
techniques include relevance MAP adaptation and joint factor analysis (JFA). It is also 
possible to model the speakers discriminatively using support vector machines (SVMs), in 
which case a SVM is trained for each speaker using his/her own GMM as a positive example 
and the GMMs of many other speakers as negative examples. 

(4) Scoring. A score is given for each trial utterance u against the model of each 
candidate speaker s for this utterance (or the UBM). The scoring method and its inputs 
depend on the speaker modeling technique used. For GMM speaker modeling, the score is 
usually calculated from the target GMM and trial utterance features. This is called 
“frame-by-frame scoring”, and it can be approximated in various ways for faster speed. For 
SVM speaker modeling, the score is calculated from the target SVM and a GMM trained 
from the trial utterance. 

(5) Score fusion and/or normalization. Normalization techniques include Z-norm, 
T-norm, ZT-norm and TZ-norm. 

(6) Decision. For speaker verification, the score of each trial utterance against its 
hypothesized speaker is compared against a global threshold. For closed-set speaker 
identification, the target speaker scoring the highest is picked for each trial utterance. For 
open-set speaker identification, the highest-scoring target speaker is picked, and its score 
compared against a global threshold to decide whether the utterance comes from the target 
speaker or a non-target speaker. 

2.2 Databases Used in the IROSIS Project 

 The primary database used in this project is the ROSSI database. This is a database for 
open-set speaker identification, i.e. one has to decide both whether the trial speaker is in the 
target set and who the speaker is. This database comprises of 8 sets, differing in language, 
channel, environment, etc. Each set has 100 training utterances (1 for each target speaker) and 
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200 trial utterances (1 in-set trial utterance for each target speaker and 100 out-of-set trial 
utterances). In addition to these, Set 1 has 196 development utterances, and Sets 2~8 share 
400 development utterances. The development utterances are used for UBM training, SVM 
training and score normalization. 
 For some time in the spring of 2011, we also used the MIXER5 database. This database 
contains speech from 60 male speakers and 81 female speakers. Each speaker speaks in 6 
sessions (labeled U ~ Z) of half an hour each, and the speech is recorded in 14 channels 
(labeled A ~ N). We selected the data to make up four scenarios that are similar to the sets in 
the ROSSI database. We used Session V for training and Session Y for testing, and 
mix-matched the channels B (close-talking) and L (far-field). The four scenarios are referred 
to as VB-YB, VL-YL, VB-YL and VL-YB respectively. 

Table 1. Detail of NIST Data Used for Training and Testing 

Purpose Source No. 
Speakers 

No. 
Utterances 

Duration 
(hr, voiced part 

only) 

Training UBM 
2004, 2005, 2006 

single train 692 867 29 

Training V 2005, 2006 multi train 435 2908 98 
Training D 2004 multi train 125 1382 45 
Training U 2005, 2006 TEL test - 2672 90 
Negative 

examples for 
SVM 

2004 single train 125 246 8 

Enrollment 2008 short train 506 648 20 
Test 2008 short test 279 620 19 

 
 As JFA speaker modeling requires much more data than the ROSSI database could 
provide, we also used the data from the NIST SRE evaluations in 2004, 2005, 2006, and 2008. 
The NIST database is for speaker verification, i.e. one only needs to decide whether the trial 
speaker is the hypothesized target speaker or not. Our experiments have focused on the 
telephone utterances of male speakers. Table 1 shows how we chose the data for training and 
testing. 

2.3 Evaluation Criteria 

 In an open-set SID system, the ground truth and the identification result can be classified 
into five cases: 
 Correct accept (CA) – the test speaker is a target speaker, and the system identifies it 

correctly. 
 Speaker confusion error (SE) – the test speaker is a target speaker, but the system 

misclassifies it as another target speaker. 
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 False reject (FR, also called “miss”) – the test speaker is a target speaker, but the 
system classifies it as an imposter. 

 Correct reject (CR) – the test speaker is an imposter, and the system correctly 
classifies it as an imposter. 

 False accept (FA, also called “false alarm”) – the test speaker is an imposter, but the 
system accepts it as a target speaker. 

 Evaluation criteria are calculated from the count of the five types of results. We used the 
following for criteria to evaluate our open-set SID experiments on the ROSSI and MIXER5 
databases: 

 Closed-set accuracy: CAAccuClosed
CA SE

=
+

, with the threshold θ  set to minus 

infinity (in which case nothing is rejected, and FR = 0). 
 Open-set accuracy: The harmonic mean of the correct identification rate for I- and 

O-trials, with the threshold θ  set to the value that maximizes the accuracy, which is 
found by parameter sweeping. 

 1 1

2 CA CRAccuOpen max , ,
CA SE FR CR FA

I O
I Oθ − −= = =

+ + + +
 (1) 

 Equal error rate (EER): This criterion only evaluates the performance of in/out 
classification, and considers speaker confusion errors as correct classifications. The 
EER is the classification error rate when  the threshold θ  is set so that the false reject 
rate and false accept rate are identical: 

 
Set  so thatCA SE CREER

CA SE FR CR FA

θ+
= =====

+ + +
 (2) 

  In order that all the criteria are the bigger the better, we report 1 – EER instead. 
 Precision biased correct decision rate (F0.5): This criterion also only considers the 

in/out classification, but is focused on the precision and recall of target trials. It is 
defined as a weighted harmonic mean of the precision and recall. Like the open-set 
accuracy, the threshold θ  is set to maximize the criteria. 

 CA SE CA SEPrecision , Recall
CA SE FA CA SE FR

+ +
= =

+ + + +
 (3) 

 
2

0.5 2

(1 ) Precision Recallmax , 0.5
Precision Recall

F
θ

β β
β
+ ⋅ ⋅

= =
⋅ +

 (4) 

 Closed-set accuracy evaluates only the “identification” performance and doesn’t 
consider the in-set / out-of-set decision; on the other hand, EER and F0.5 only evaluate the 
in/out decision performance. Open-set accuracy is a good overall measure of the 
performance. 
 In a speaker verification task, there are no speaker confusion errors (SE). We use the 
equal error rate (EER) as the criterion to evaluate our speaker verification experiments on the 
NIST database. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Acoustic Feature Extraction 

3.1.1 Various Acoustic Features 

 (0) Baseline MFCC feature. The procedure of extracting the baseline MFCC feature is 
shown in Figure 2. Based on some pilot experiments on the MIXER5 experiment, we chose to 
use CMN (cepstral mean normalization) as the normalization technique (in which we 
normalize both the mean and the variance of the features). We didn’t use RASTA filtering [1] 
or spectral subtraction for noise reduction as they didn’t contribute to the performance. 

Framing
and FFT

Mel
filterbank

Logarithmic 
non-linearity DCT CMNSpeech MFCC

 

Figure 2. Procedure of Extracting the Baseline MFCC Feature 

 (1) MHEC (mean Hilbert envelop coefficients) [2]. The procedure of extracting the 
MHEC feature is shown in Figure 3. It is claimed to be magically robust to car noise. 
However, the extraction procedure is not very different from MFCC: the Gammatone 
filterbank is similar to the Mel filterbank although the former is in the time domain and the 
latter is in the frequency domain; the calculation of the Hilbert envelope is similar to that of 
the energy in each time-frequency unit; and the long-term average is similar to CMS (cepstral 
mean subtraction). There seems to be no theoretical foundation why MHEC should be robust 
to car noise, and our experiments didn’t support this claim, either. 

 

Figure 3. Procedure of Extracting the MHEC Feature 

 (2) WMVDR (warped minimum variance distortionless response) [3]. MVDR is a 
method for estimating a smoothed version of a signal’s power spectrum. Its warped version, 
warped MVDR (WMVDR), is used to replace the FFT and filterbank steps in the extraction 
of MFCC, producing a smoother power spectrum with different resolution at different 
frequencies just like the output of the Mel filterbank. There had been experiments [3] 
showing that WMVDR features perform better than MFCC features. But our experiments 
have shown that the performance of WMVDR features wasn’t very different from MFCC. 
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This means that a smoother power spectrum doesn’t have much effect on the final 
identification performance. 
 (3) Multitaper MFCC [4]. The motivation of multitaper MFCC is to reduce the variance 
in the power spectrum estimation. It estimates the power spectrum of a frame using a series of 
different windows (also called “tapers”), and then average the different estimations of the 
power spectrum. The operation of averaging reduces the variance in the power spectrum at 
the cost of reduced resolution, but resolution is not important because the power spectrum 
will be fed into the Mel filterbank anyway. The three types of multitapers introduced in [4] all 
resulted in significant improvement in closed-set accuracy on the ROSSI database, especially 
the multipeak series with 8 windows. 
 (4) SCF & SCM (spectrum centroid frequency & magnitude) [5]. In the computation 
of MFCC, the energy distribution within each band is ignored. SCF aims to incorporate this 
information in the feature as well. Defined as the average of the frequency points on the 
spectrum within a band weighted by the magnitude at these frequency points, SCF describes 
how much the energy distribution deviates from the center frequency in each band. SCM is 
defined as the average of the magnitudes within a band weighted by frequency, and can be 
computed efficiently together with SCF. Although there’s no reason to weight the magnitude 
by frequency, because the bands are narrow, SCM is actually almost equal to the MFCC. 
 Since SCF contains information that is absent in MFCC, a fusion of the two features is 
expected to improve the performance. However, the performance of SCF alone turned out so 
poor that neither feature fusion nor score fusion performed as well as MFCC. 
 (5) HSCC & FFV (harmonic structure cepstral coefficients & fundamental 
frequency variation) [6][7]. These are two prosodic features that provide complementary 
information to MFCC. HSCC models the probabilistic distribution of the fundamental 
frequency by harmonic summation, and FFV models the rate of variation of the fundamental 
frequency by stretching and comparing the short-time spectrum of adjacent frames. We 
carried out score fusion of MFCC, HSCC and FFV on the MIXER5 database. The fusion 
resulted in marginal improvement in closed-set accuracy, but the fusion weights were quite 
counter-intuitive (FFV often carries a larger weight than MFCC). 
 (6) DSCC (delta-spectral cepstral coefficients) [8]. This feature aims at enhancing the 
noise robustness of delta MFCC features. Its extraction procedure is compared with that of 
MFCC in Figure 4. In extracting delta MFCC, the differential is performed last, long after the 
logarithm. Additive noise can have a destructive effect on the log spectrum filling in all the 
deep valleys, therefore the differential of the clean log spectrum and noisy log spectrum will 
be very different. But on the spectrum before logarithm, the effect of additive noise is 
relatively small. DSCC calculates the differential before applying the logarithmic 
non-linearity, and since the differential can have negative values, the logarithm is replaced by 
Gaussianization. Our experiments have shown that DSCC is more robust to noise than delta 
MFCC. 



 

Approved for Public Release; Distribution Unlimited. 
 
7 

Framing
and FFT

Mel
filterbank

Logarithmic 
non-linearity DCT CMN MFCCSpeech Delta

MFCC

Framing
and FFT

Mel
filterbank

Gaussian-
ization DCTSpeech DSCC

Differential

CMNDifferential

 

Figure 4. Comparison of the Extraction of the Delta MFCC and DSCC Features 

3.1.2 Pre- and Post-Processing Techniques 

 (1) Pre-emphasis and delta features. These are traditional pre- and post-processing 
techniques. We have verified that they do improve the performance on the ROSSI database, 
both closed-set and open-set. 
 (2) Linear prediction (LP) pre-processing for noise reduction. Linear prediction can 
be used for speech coding, because speech signals have patterns and are largely predictable. 
On the other hand, noise is random and unpredictable. This inspired us to think that 
pre-processing a noisy signal with linear prediction can increase the signal-to-noise ratio 
(SNR) of the signal. We applied LP with block filtering up to 20th order; later we discovered 
some related work [9] that used least-mean-squares (LMS) filtering up to several hundredth 
order. Most combinations of filtering method and filter order were confirmed to increase the 
SNR, and the typical SNR gain is between 5 ~ 10 dB. However, the increase in SNR didn’t 
translate directly into improved performance of the back-end system. We experimented with 
three back-end systems (speaker recognition on the MIXER5 database, continuous spoken 
digits recognition, and HMM-based pitch tracking), and the performance of all the three 
systems stayed the same no matter we applied LP pre-processing or not. 
 (3) Short-time feature Gaussianization [10]. This is an advanced version of CMN. 
Gaussianization not only normalizes the mean and variance of the features, but warps them 
non-linearly to conform to the Gaussian density function. In short-time feature 
Gaussianization, a feature value that is the k-th smallest in an N-point window around it will 

be warped to 1[( 1) / ]k N−Φ − , where Φ  is the Gaussian cumulative density function (CDF). 

Short-time feature Gaussianization has shown consistent performance improvement across 
most conditions, although there hasn’t been any determinative explanation as to why. A 
plausible explanation is that a Gaussian distribution of the features agrees best with the GMM 
speaker modeling. 

3.1.3 Best Feature Selected 

 Our experiments with the various types of acoustic features and pre-/post-processing 
techniques (see Section 4.1) showed the following to be beneficial: Multitaper MFCC (with 8 
multipeak tapers), DSCC, pre-emphasis, short-time feature Gaussianization. We combined 
these all and arrive at a 40-dimensional acoustic feature whose extraction procedure is shown 
in Figure 5. According to our old naming conventions, this feature should be called 
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PRE_PEAK8_MFCC20_GAUSS300 + PRE_PEAK8_DSCC20(GAUSS300)_CMN 
And we call it PPMD for short. 

Pre-emphasis
Multipeak 

Spectrogram
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Logarithmic 
non-linearity DCT

Gaussianization
(window length
= 300 frames)

Speech

Delta
Gaussianization
(window length
= 300 frames)

DCT CMN

C
oncatenation

PPMD 
feature

 

Figure 5. Procedure of Extracting PPMD Features 

 In addition to this, we also used a version of MFCC features that was used previously in 
other projects. This feature also has 40 dimensions, and we call it RM40. RM40 shows 
slightly inferior performance to PPMD on the ROSSI database, but is consistently better than 
PPMD on the NIST database. This verifies the fact that there is no universal best feature. 

3.2 Speaker Modeling and Scoring 

3.2.1 Gaussian Mixture Modeling (GMM) 

 The basic method of modeling the speech of a target speaker is Gaussian mixture models 
(GMM). A GMM is made up of C components (in our experiments, C = 256 for ROSSI and 

MIXER5, and C = 1024 for NIST), each component i having a mean vector iµ , a (typically 

diagonal) covariance matrix iΣ , and a weight iw . 

 The GMM for a target speaker can be trained entirely from the data of this speaker, but it 
is usually preferred to adapt it from the UBM. There are two reasons to favor adaptation: there 
may be not enough data to train a speaker GMM robustly, while UBM can provide a 
reasonable prior; the components of an adapted GMM are aligned with those of the UBM, 
which is crucial for the SVM modeling to be introduced. In adaptation, usually the covariance 
matrices and weights are kept fixed, and only the component means are adapted. 

3.2.1.1 GMM Adaptation Techniques 

 Common GMM adaptation techniques include relevance MAP adaptation [11] and joint 
factor analysis (JFA). 
 In relevance MAP adaptation, first an EM iteration is run with the UBM as the initial 

value to obtain a set of iµ ’s. Then these iµ ’s are interpolated with those of the UBM via a 

relevance factor r: 
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UBM

i i i
i

i

n r
n r

µ µµ +
←

+
 (5) 

where in  is the soft count of feature vectors aligned with component i. This interpolation has 

the effect that the less data a component has, the more its mean is pulled back to the UBM 
mean. The appropriate value of r depends on the amount of data available, but the 
performance is found to be not very sensitive to r. A typical value of r is 16. 
 Relevance MAP adaptation is called “MAP” because it is equivalent to imposing a prior 
on the component means: 

 1~ ( , )UB
i

M
i ir

µ µ ΣN  (6) 

Joint factor analysis is a more sophisticated version of MAP adaptation, where the parameters 
of the prior also need to be trained from data. Due to its complexity, it deserves separate 
explanation in Section 3.3. 

3.2.1.2 Scoring Methods with GMM Modeling 

 The basic method to score an utterance against a GMM is full frame-by-frame scoring. 

Denote the feature vectors of the utterance by 1{ , , }nX X X= … , and the GMM by 

{ , , }i i iG wµ= Σ , then the score is defined as the frame-average log-likelihood: 

 
1 1

1score( , ) log ( ; , )
n C

i t i i
t i

X G w p X
n

µ
= =

= Σ∑ ∑  (7) 

where ( ; , )p X µ Σ  is the multivariate Gaussian density function. This score is usually 

adjusted by subtracting the score of the trial utterance against the UBM. 
 Full frame-by-frame scoring can be slow due to the summation across the GMM 
components. When an utterance needs to be scored against multiple GMMs (e.g. in speaker 
identification, or in speaker verification where an utterance needs to be verified against 
multiple speakers), it can be beneficial to use fast frame-by-frame scoring ([11],). In fast 
frame-by-frame scoring, the second summation doesn’t go across all components, but only a 
few (say, 5) top components: 

 
1

1score( , ) log ( ; , )
t

n

i t i i
t TCi

X G w p X
n

µ
∈=

= Σ∑ ∑  (8) 

The “top components” set tTC  is chosen for each feature vector based on the UBM: it 

contains the components that yield the several highest values of ( ; , )UBM
i t i iw p X µ Σ . 
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3.2.2 Support Vector Machine (SVM) Modeling 

 GMM is a generative modeling technique of speakers, but speakers can also be modeled 
discriminatively with support vector machines (SVM). For each target speaker, a GMM is 
adapted from the UBM for each training utterance, and these are used as the positive training 
examples for the SVM. In addition, a GMM is adapted from the UBM for each utterance in a 
pool of “SVM-negative” utterances, and these are used as negative training examples for the 
SVMs of all target speakers. It is possible to re-use the utterances used for UBM training as 
SVM-negative utterances. 
 To train an SVM with GMMs as training examples, it is necessary to come up with a 
kernel function for GMMs. Because the component covariances and weights are not adapted, 
a GMM can also be represented by the collection of its component means. The 
CF-dimensional vector obtained by stacking the F-dimensional mean vectors of the C 
components is called the supervector. A kernel function for GMMs is an inner product of the 
supervectors, optionally with some normalization and weighting with the covariance matrices 
and component weights. 
 We used the following six types of kernel functions: 

 PLAIN ( , ) ( ) ( )a T b
a b i ii

K M M µ µ=∑  (9) 

 1
GUMI ( , ) ( ) ( )a T b

a b i i ii
K M M µ µ−= Σ∑  (10) 

 1
KL ( , ) ( ) ( )a T b

a b i i i ii
K M M w µ µ−= Σ∑  (11) 

 
2 1

L2 1/2

( ) ( )( , ) exp
4

a b T a b
i i i i i i

a b i
i

wK M M µ µ µ µ− − Σ −
= − 

Σ  
∑  (12) 

 
1

BHATT
( ) ( )( , ) exp

8

a b T a b
i i i i i

a b i
K M M µ µ µ µ− − Σ −

= − 
 

∑  (13) 

 
1

WBHATT
( ) ( )( , ) exp

8

a b T a b
i i i i i

a b ii
K M M w µ µ µ µ− − Σ −

= − 
 

∑  (14) 

These functions are derived from different motivations; see A for details. Despite their 
different motivations, the forms of the kernels look similar, and it is possible to tweak the 
powers and constants in the formulas to make new kernels. Our experience (see Section 4.2 
for example), however, consistently shows that there’s not much difference between the 
performances of five of these kernels, except for L2 which performs significantly worse. 
 To score a trial utterance against the SVM of target speaker, first adapt a GMM for this 
utterance, then substitute this GMM into the discriminant function of the SVM. For a 
negative trial utterance, the score is usually around -1.0. However, because the SVMs are 
usually trained with very few positive examples (often only one), the score can be negative 
even for positive trial utterances. Our experience is that the scores for positive trial utterances 
are usually around -0.7. As a result, we cannot directly perform speaker verification based on 
the sign of this score, but need to tune the threshold on development data. 
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 Our experiments on both the ROSSI database (see Section 4.2) and the NIST database 
(see Section 4.3) have shown that SVM modeling is significantly better than GMM modeling. 

3.3 Joint Factor Analysis (JFA) Modeling 

 JFA is a generalization of relevance MAP adaptation in GMM modeling. It assumes that 
the supervector m of a speaker GMM can be decomposed as 

 m M Vy Ux Dz= + + +  (15) 

In this formula, M is the UBM supervector; V and U are tall and thin matrices with CF rows 
and only a few hundred columns whose columns are eigenvoices and eigenchannels; D is a 
CF-by-CF diagonal matrix; y, x, z are random vectors that have sizes compatible with the 
matrices, and obey the standard normal distribution. In other words, it imposes on the speaker 
GMM supervector m a prior distribution of the following form: 

 2~ ( , )T TM VV UU Dm + +N  (16) 

It can be shown that relevance MAP adaptation is a special case of JFA with 0V U= =  and 
2 /D r= Σ  ( Σ  is a diagonal block matrix whose blocks are the component covariance 

matrices). 
 In Eq. (15), the terms Vy and Dz are considered to come from the speaker characteristics, 
while the term Ux is considered to arise due to environment and channel variations. Therefore 

the latter term is dropped, and the supervector is take to be the sum M Vy Dz+ + . 

 To obtain GMM models (or supervectors) for a set of speakers via JFA, there are two 
major steps. First, the matrices V, U, D specifying the prior distribution must be trained from 
data. Second, the vectors y, x, z need to be estimated under the MAP criterion. Both these 
steps involve complicated mathematics; we give a tutorial in Section 3.3.1. 
 As an extension of relevance MAP adaptation, JFA also falls in the category of GMM 
speaker modeling, and therefore can be used in combination with SVM speaker modeling. It 
was our goal to show that JFA + SVM modeling would be better than relevance MAP + SVM, 
but unfortunately we weren’t able to achieve this goal. 
 JFA was first proposed in a fully convolved form [12], and was later simplified by 
multiple researchers, resulting in many variants. These variants and our choice will be 
introduced in Section 3.3.2. In order to deal with the channel mismatch between the target 
GMM (where the channel effect Ux has been dropped) and the trial utterance, many scoring 
methods have been proposed for JFA [13], with different levels of approximation. These 
scoring methods will be introduced in Section 3.3.3. Our experiment setup and results of JFA 
will be given in Section 4.3. 
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3.3.1 A Tutorial of JFA 

3.3.1.1 ML training of GMMs, and Baum-Welch statistics 

 To fully understand the mathematics involved in JFA, it is helpful to review the 
maximum likelihood (ML) training of GMMs. 
 Suppose we want to train a GMM with C components from a set of F-dimensional -

feature vectors 1{ , , }TX X X= …  (all column vectors). For the c-th component ( , ,1c C= … ), 

we denote the mean vector by cm  (column vector), the covariance matrix by cΣ , and the 

component weight by cw . We assume the covariance matrices to be diagonal. For 

conciseness, we define the CF-dimensional “supervector” m as the vertical concatenation of 
the mean vectors, and the CF × CF “supercovariance” matrix Σ  as the diagonal 
concatenation of the covariance matrices. 
 In our problem, we assume the covariance matrices and the components to be fixed and 
known, and we need to find the supervector m that best fits the data X. Under the maximum 
likelihood (ML) criterion, we seek to maximize the log likelihood of the data X given the 
supervector m: 

 
1

/2 1/2

( ) log ( | ) log ( | ) log ( ) ( | , )

1log exp ( ) ( )
(2 ) | | 2

t

t t t t
t t Z

Tc
t c c t cF

t c c

L m P X m P X m P Z P X Z m

w X m X m
π

−

= = =

 = − − Σ − Σ  

∑ ∑ ∑

∑ ∑
 (17) 

where 1, ,tZ C= …  refers to the index of the component that generated the data sample tX . 

This objective function is hard to optimize directly because of the sum nested in the log, and 
the usual solution is the EM algorithm. The EM algorithm requires an auxiliary function 

( , ')Q m m  that satisfies 

 ( ) ( , ( , ') ( ')), QL m Q m m m m L m≤=  (18) 

In each EM iteration, the auxiliary function ( , ')Q m m  is maximized w.r.t. m’, and the old 

supervector m is replaced by the new supervector m’. Eq. (18) guarantees that the objective 

function ( )L m  is non-decreasing. 

 The expression of the auxiliary function is given by: 
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( , ') ( ') KL( | , || | , ')

( | , )log ( | ') ( | , ) log
( | , ')

( | , )( | , ) log ( | ') log
( | , ')

( , | ')( | , ) log
( | , )

( | , )

t

t

t

t t t t
t

t t
t t t

t t Z t t

t t
t t t

t Z t t

t t
t t

t Z t t

t t

Q m m L m Z X m Z X m

P Z X mP X m P Z X m
P Z X m

P Z X mP Z X m P X m
P Z X m

P X Z mP Z X m
P Z X m

P Z X m

= −

= −

 
= − 

 

=

=

∑

∑ ∑∑

∑∑

∑∑
log ( , | ') ( | , )

t

t t t t
t Z t

P X Z m H Z X m+∑∑ ∑

 (19) 

The second term (entropy) is a “constant” that does not depend on m’. 
 In the E-step of an EM iteration, we calculate the posterior probability of the component 

index given the data ( | , )t tP Z X m , according to the old supervector m. This step is also called 

aligning the data with the components. We denote ( | , )t tP Z c X m=  by tcN  for short, and 

define the following statistics (called Baum-Welch statistics [14]) of the data X for each 
component, which will be useful in the M-step: 

• Zeroth order statistics c tc
t

N N=∑ : the “number” of data samples aligned with the 

c-th component. 
• First order statistics c tc t

t
F N X=∑ : the sum of the data samples aligned with the c-th 

component. 
• Second order statistics T

c tc t t
t

S N X X=∑ : the sum of the “squares” of the data 

samples aligned with the c-th component. This will not be useful since we’re only 
training the mean vectors of the GMM. 

We also define a CF × CF diagonal matrix N whose diagonal blocks are c FN I , where 

, ,1c C= …  and FI  is a unit matrix of order F, and a CF-dimensional column vector F as a 

vertical concatenation of the cF  for all the components. It’s worth pointing out that, although 

not explicitly noted, the Baum-Welch statistics (including N and F) are functions of the data X 
and the supervector m. 

 Now we look at the M-step, in which we maximize ( , ')Q m m  w.r.t. m’. We simplify 

( , ')Q m m  as follows: 
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1
/2 1/2

1 1

1 1

( , ') constant ( | , ) log ( , | ')

1constant log ( ' ) ( ' )
(2 ) | | 2

1constant ( ' ' ' )
2

1constant ' ' '
2

t

t t t t
t Z

Tc
tc t c c t cF

t c c

T T
tc c c t c c c

t c

T T

Q m m P Z X m P X Z m

wN X m X m

N m X m m

m F m Nm

π
−

− −

− −

= +

 
= + − − Σ − Σ 

= + Σ − Σ

= + Σ − Σ

∑∑

∑∑

∑∑
 (20) 

Setting 1 1
' ( , ') ' 0m Q m m F Nm− −∇ = Σ −Σ = , we obtain the optimal new supervector: 

 1m̂ N F−=  (21) 

which is the familiar conclusion of setting the new mean vector of each component as the 
average of the data aligned with that component. 
 The entire EM algorithm starts by initializing the supervector m randomly or using 
k-means clustering, and then repeats the EM iteration for a given number of times or until 
convergence. The Baum-Welch statistics are re-calculated in every iteration. 

3.3.1.2 MAP adaptation of GMMs in general 

 Sometimes we don’t have enough data to train a GMM with ML robustly. In such cases 
we can train the GMM with MAP, i.e. imposing a prior distribution on the supervector m. The 

most common prior is the Gaussian ( , )M ZN , where M is typically the supervector of the 

UBM. The MAP objective function is: 

 11'( ) ( ) ( ) ( )
2

TL m L m m M Z m M−= − − −  (22) 

Similarly, the auxiliary function will also include the prior term: 

 1 1 11 1'( , ') constant ' ' ' ( ' ) ( ' )
2 2

T T TQ m m m F m Nm m M Z m M− − −= + Σ − Σ − − −  (23) 

Setting 1 1 1
' '( , ') ' ( ' ) 0m Q m m F Nm Z m M− − −∇ = Σ −Σ − − = , we obtain the optimal new 

supervector: 

 1 1 1( ) (ˆ )I Z N M Z Fm − − −= + Σ + Σ  (24) 

Because calculating the Baum-Welch statistics can be time-consuming, in MAP adaptation 
we usually perform only one iteration, initializing the supervector to be that of the UBM. 
Therefore the Baum-Welch statistics are also calculated against the UBM. 
 Now is a good chance to understand why the relevance MAP adaptation is called MAP. 
Let the covariance matrix of the prior distribution be 

 1Z
r

= Σ  (25) 

where r is the relevance factor. It is easy to see that the adapted supervector will be 
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 1( )ˆ ( )m rI N rM F−= + +  (26) 

which is exactly the rule of relevance adaptation. 

3.3.1.3 GMM adaptation using JFA 

 JFA is just a way of specifying the prior distribution of the supervector m. It formulates m 
as 

 m M Ux Vy Dz= + + +  (27) 

In this formula, M is the UBM supervector. U and V are tall-and-thin matrices with CF rows 
(typically between 104 and 105) but only several hundred columns, and D is a CF × CF 
diagonal matrix. x, y, z are mutually independent random column vectors compatible with the 

size of U, V, D, and obeying the standard Gaussian distribution (0,1)N . The term Ux models 

the variability in the supervector due to the channel, and Vy + Dz models the variability due to 
the speaker. The columns of U and V act as eigenvectors, and are called eigenchannels and 
eigenvoices respectively. The elements of x and y are called channel factors and speaker 
factor1. 
 Eq. (27) effectively specifies the following prior distribution: 

 2~ ( , )T TM UU VV Dm + +N  (28) 

It seems we can substitute 2T TZ UU VV D= + +  into Eq. (24), and the problem is solved. 

 But there are two issues: 
(1) Calculating Eq. (24) involves inverting a CF × CF non-diagonal matrix, which is 

computationally intractable; 
(2) The channel variability modeled by the Ux term is actually a nuisance that we 

wouldn’t like to include in the updated supervector, i.e. we want ˆ ˆ ˆm yM V Dz= + + . 
This requires us to explicitly solve for the optimal adapted values of x, y, and z. 

 In order to do this, we can write the MAP auxiliary function in terms of x, y, z and x’, y’, 
z’: 

 

1

1

'( , , , ', ', ') constant ( ' ' ')
1 ( ' ' ') ( ' ' ')
2
1 1 1' ' ' ' ' '
2 2 2

T

T

T T T

Q x y z x y z M Ux Vy Dz F

M Ux Vy Dz N M Ux Vy Dz

x x y y z z

−

−

= + + + + Σ

− + + + Σ + + +

− − −

 (29) 

In a more general version of the EM algorithm, we don’t need to maximize the auxiliary 
function in the M-step; we only need to increase it. Therefore we take a two-step approach 
following the code in [15]: in the first step we find x’ and y’ to maximize Q’ assuming z’ = 0, 

                                                 
1 The terminology is not unified. In some literature, the columns of U and V are called channel factors and speaker factors, 
while the elements of x and y are called factor loadings. 
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and in the second step we find z’ to maximize Q’ assuming the values x’ and y’ found in the 

last step. Because [  ][ ; ]Ux Vy U V x y+ =  (where the semicolon stands for vertical 

concatenation), the method for solving for x’ and y’ jointly is identical to that for solving y’ 
alone assuming x’ = 0. We absorb everything in Eq. (29) that doesn’t depend on y’ into the 
constant: 

 1 11'( , ') constant ' ( ) ' ( ) '
2

T T T TQ y y y V F NM y I V NV y− −= + Σ − − + Σ  (30) 

Setting 1 1
' '( , ') ( ) ( ) ' 0T T

y Q y y V F NM I V NV y− −∇ = Σ − − + Σ = , we obtain the optimal new 

speaker factors: 

 1 1 1( ) (ˆ )T TI V NV Vy F NM− − −= + Σ Σ −  (31) 

If we solved for x and y jointly, then the optimal new factors would be: 

 1 1 1[ ] ( [  ] [  ]) [  ]ˆ ˆ; ( )T TI U V N Ux y V U V F NM− − −= + Σ Σ −  (32) 

The matrix inversion here is no challenge because the order of the matrix is only several 
hundred. 

 By letting ˆ ˆ,  '' xx y y= =  and setting the gradient of Eq. (29) w.r.t. z’ to 0, we can obtain 

the optimal z’: 

 2 1 1 1 ˆ( ˆˆ [ ( )])I D N Dz x VF N U yM− − − + += + Σ Σ −  (33) 

The matrix inversion here is also easy because the matrix to invert is diagonal. 
 As said in the previous subsection, in MAP adaptation we only do one EM iteration, 
initializing the supervector to that of the UBM. Therefore the Baum-Welch statistics N and F 
in Eqs. (32) and (33) are calculated against the UBM. Since we do not want to include the 
channel variability in the adapted GMM, the adapted supervector will be 

 ˆ ˆ ˆm M Vy Dz= + +  (34) 

3.3.1.4 Training the matrices U, V, D 

 The procedure described in the last subsection happens in the “speaker enrollment” step, 
where the matrices U, V, D are known, and the training data X are the feature vectors 
extracted from the utterance(s) of each speaker. However, the matrices U, V, D need to be 
trained before enrolling the speakers, and this problem is dealt with in this subsection. 
 We train these matrices one by one in the order of V, U, D, following the code in [15]. 
When training one matrix, we assume that the matrices not yet trained are equal to zero. We 
don’t train the matrices jointly because it would be mathematically much more difficult, and 
also because it is pointed out in [16] that when they’re trained jointly, D often gets 
undertrained – most of the speaker variability is accounted for by Vy, and Dz has little effect. 
This is probably because V has many more degrees of freedom than D. 
 Before describing the training algorithm, which is explained in detail in [17], we shall 
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point out an implicit approximation made by that paper on the data likelihood ( | )P X m . 

From Eq. (18), we know that 

 log ( | ,) () )(P X m L Q M mm ≥=  (35) 

where M is the UBM supervector, and that the difference between ( )L m  and ( , )Q M m  is the 

Kullback-Leibler divergence between the “alignment” of the data against the UBM and the 
GMM with supervector m. We assume the divergence is small enough to neglect, thereby 
approximating the data likelihood by 

 log ( | ) ( , )P X m Q M m≈  (36) 

Then, from Eq. (20), we have 

 1 11log ( | ) constant
2

T TP X m m F m Nm− −+ Σ − Σ≈  (37) 

where the Baum-Welch statistics N and F are calculated against the UBM. Applying this 
approximation has the advantage that the Baum-Welch statistics can be pre-calculated against 
the UBM and stored, and needn’t be re-calculated the in the iterative procedure of training U, 
V, D. 

(1) Training the V matrix 
 Training the V matrix requires utterances from multiple speakers, and ideally multiple 

utterances from each speaker to average out the channel variability. Denote by ( )X s  the 

feature vectors of the speaker s. The training objective of the V matrix is to maximize the total 
data likelihood: 
 ( ) log ( ( ) | )

s
L V P X s V=∑  (38) 

The conditioned probability may look weird, but we can plug in the hidden variable ( )y s , just 

like tZ  in Eq. (17): 

 
( )

( ) log ( ( )) ( ( ) | ( ), ) d ( )
s y s

L V P y s P X s y s V y s= ⋅∑ ∫  (39) 

Again, we’re having an integral nested within a log, which we tackle with the EM algorithm. 
The auxiliary function is: 

 ( )

( )

( , ') constant ( ( ) | ( ), ) log ( ( ), ( ) | ') d ( )

constant ( ( ) | ( ), ) log ( ( ) | ( ), ') d ( )

s y s

s y s

Q V V P y s X s V P X s y s V y s

P y s X s V P X s y s V y s

= +

= +

∑ ∫

∑ ∫
 (40) 

For clarity, we will drop the argument ( )s  hereafter. The ( | , )[ ] d
y

P y X V y⋅∫  part is actually 

an expectation operator over the posterior distribution of y given the data X, which we will 
denote as E for short. With the approximation of Eq. (36), this posterior distribution is given 
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by Eq. (30), i.e. 

 1 1 1 1 1~ ( ) ( ) )( ,  ( )T T Ty I V NV V F NM I V NV− − − − −+ Σ Σ − + ΣN  (41) 

where the Baum-Welch statistics are calculated against the UBM. From this we can calculate 
some statistics about y: 

 1 1 1( ) ( )T TEy I V NV V F NM− − −= + Σ Σ −  (42) 

 1 1( ) ( )( ) ( )T T TE yy Ey Ey I V NV− −= + + Σ  (43) 

which will be useful in simplifying ( , ')Q V V . 

 Now let’s go on simplifying Eq. (40). The part log ( | , ')P X y V  is approximated by Eq. 

(37): 

 

1 1

1 1

1 1

1( , ') constant (( ' ) ) (( ' ) ( ' ))
2

1constant [ ' ( )] ( ' ' )
2

1constant tr[ ' ( )( ) ] tr[ ' ' ( )]
2

T T

s

T T T T

s

T T T T

s

Q V V E M V y F E M V y N M V y

E y V F NM E y V NV y

V F NM Ey V NV E yy

− −

− −

− −

 = + + Σ − + Σ + 
 
 = + Σ − − Σ 
 
 = + Σ − − Σ 
 

∑

∑

∑
 (44) 
Set the gradient w.r.t. V’ to zero: 
 1 1( , ') ( )( ) ' ( ) 0V

T T

s
Q V V F NM Ey NV E yy′

− − = Σ − −Σ =∇ ∑  (45) 

we can find the optimal eigenvoice matrix to be the solution of the following equation system: 
 ˆ ( ) ( )( )T T

s s
NVE yy F NM Ey= −∑ ∑  (46) 

This equation system can be solved row by row. 
 The entire EM algorithm for training V starts by initializing V randomly, and going 
through the above iteration for a number of times. The procedure is summarized below, 
introducing some new symbols for conciseness: 

• For each speaker s: 
 Calculate the Baum-Welch statistics ( )N s  and ( )F s  against the UBM; 
 Calculate the “centered” first-order Baum-Welch statistics ( ) ( ) ( )F s F s N s M= − ; 

• Initialize V randomly. 
• Repeat for a fixed number of times or until convergence: 
 For each speaker s: 

♦ Calculate the matrix 1 1( ) ( ( ) )TG s I V N s V− −= + Σ ; 
♦ Calculate the statistics about the posterior distribution of y: 
 1

1 ( )( ) ( ) TE s Ey G s F sV −= = Σ  ;           (Eq. (42)) 
 2 1 1( ) ( ) ( ) ( ) ( )T TE s E yy E s E s G s= = + ;        (Eq. (43)) 
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 Solve the equation system 2 1
ˆ( ) ( ) ( ) ( )T

s s
N s VE s F s E s=∑ ∑  ;  (Eq. (46)) 

 Replace V with V̂ . 
(2) Training the U matrix 

 The procedure for training V is similar to that of training U. The differences include: 
• In the main loop, things are calculated for each utterance instead of for each speaker; 
• The speaker factors ( )y s  is estimated for each speaker before the main loop, and 

subtracted from the centered first-order Baum-Welch statistics of each utterance. 
 The entire procedure is as below. 

• For each speaker s: 
 Calculate the Baum-Welch statistics ( )N s  and ( )F s  against the UBM; 
 Estimate the speaker factors 1 1 1( ( ) ) ( ( ) ( )) )( T TI V N s V V F s Ns s My − − −= + Σ Σ − ;  (Eq. 

(31)) 
• For each utterance u (suppose it’s spoken by s): 
 Calculate the Baum-Welch statistics ( )N u  and ( )F u  against the UBM; 
 Calculate the “centered” first-order Baum-Welch statistics 

( ) ( ) ( )[ ( )]F u F u N u M Vy s= − + ; 
• Initialize U randomly. 
• Repeat for a fixed number of times or until convergence: 
 For each speaker u: 

♦ Calculate the matrix 1 1( ) ( ( ) )TG u I U N u U− −= + Σ ; 
♦ Calculate the statistics about the posterior distribution of x: 
 1

1 ( )( ) ( ) TE u Ex G u F uU −= = Σ  ; 
 2 1 1( ) ( ) ( ) ( ) ( )T TE u E xx E u E u G u= = + ; 

 Solve the equation system 2 1
ˆ( ) ( ) ( ) ( )T

u u
N u UE u F u E u=∑ ∑  ; 

 Replace U with Û . 
(3) Training the D matrix 
• For each speaker s: 
 Calculate the Baum-Welch statistics ( )N s  and ( )F s  against the UBM; 
 Estimate the speaker factors 1 1 1( ( ) ) ( ( ) ( )) )( T TI V N s V V F s Ns s My − − −= + Σ Σ − ; 

• For each utterance u (suppose it’s spoken by s): 
 Calculate the Baum-Welch statistics ( )N u  and ( )F u  against the UBM; 
 Estimate the channel factors 

1 1 1( ( ) ) [ ( ) (( ) )( ( ))]T TI U N u U U F u N u Vx M y su − − −= + Σ Σ − + ; 
 Calculate the “centered” first-order Baum-Welch statistics 

( ) ( ) ( )[ ( ) ( )]F u F u N u M Vy s Ux u= − + + ; 
• For each speaker s: 
 Calculate the “centered” first-order Baum-Welch statistics ( )F s  by summing up 
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the ( )F u  of all utterances u spoken by s. 
• Initialize D to a random diagonal matrix. 
• Repeat for a fixed number of times or until convergence: 
 For each speaker s: 

♦ Calculate the matrix 2 1 1( ) ( ( ))G s I D N s− −= + Σ ; 
♦ Calculate the statistics about the posterior distribution of z: 
 1

1 ( )( ) ( )E s Ez G s F sD −= = Σ  ;  
 2 1 1( ) ( ) ( ) ( ) ( )T TE s E zz E s E s G s= = + ;      * 

 Solve the equation system 2 1
ˆ( ) ( ) ( ) ( )T

s s
N s DE s F s E s=∑ ∑  ;  * 

 Replace D with D̂ . 
 Note that, because D is a diagonal matrix, for the equations marked with an asterisk, we 
only need to care about the diagonal elements. 

3.3.2 Variants of JFA and Our Choices 

 (1) Order of training the V, U, D matrices. [14] doesn’t state it very clearly but seems 
to imply that they trained the matrices in the order of V-D-U. However, in most code we have 
found (including the Matlab demo [15] and Alize), the matrices were trained in the order of 
V-U-D. Our tutorial above was also written in the order of VU-D. The Janus code we had (see 
Section 4.3.1) seemed to support both orders. 
 The two different training orders affect the data for training D. In the V-D-U order, D is 
trained before the eigenchannels, therefore there must be multiple utterances for the same 
speaker to average out the channel effect. On the other hand, in the V-U-D order, the channel 
effect in the utterances for training D can be removed since U has been trained already, 
therefore it is possible to use only one utterance for each speaker. However, theoretically the 
V-D-U order makes more sense, since it first trains everything related to speaker variability, 
and then trains the rest related to channel variability. 
 We adopted the V-D-U order in our latest experiments. 
 (2) Initialization of the V, U, D matrices. This is not carefully stated in most literature; 
usually they just say “random initialization” (e.g. [14]). However, we find that the order of 
magnitude of the initial value is important. We find that after the first iteration, the directions 
of the columns would have almost converged, and in the subsequent iterations it is mostly the 
magnitude that gets adjusted. When the initial values are two small, it would take more 
iterations for the magnitude to converge; when the initial values are too large, the magnitude 
would decrease at a very slow speed and wouldn’t converge even in hundreds of iterations. 
We came up with the following empirical scheme for initializing these matrices: 

 Let L CF=  be the length of the supervector, 1−Σ  be the mean of the inverse of the 

elements in Σ  (the block diagonal matrix of the component covariance matrices), and N  be 

the average zeroth-order Baum-Welch statistics (number of points) per component and per 
speaker. Then, initialize the elements of V and U to obey the normal distribution 
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1(0,  1/ )L N−ΣN , and the diagonal elements of D to be the absolute value of random 

variables that obey the normal distribution 1(0,  1/ )N−ΣN . 

 This initialization scheme has been found to work better than initializing everything to be 
uniformly distributed within the interval [0,1] (as implemented in Janus and Alize).  
 (3) Methods and number of iterations in training the V, U, D matrices. The training 
procedure of the matrices is an iterative procedure, where in each iteration an objective 
function is increased. For example, in the training of the V matrix, the objective function is as 
follows: 

 

( )

( ) log ( ( ) | )

log ( ( )) ( ( ) | ( ), ) d ( )
s

s y s

L V P X s V

P y s P X s y s V y s

=

= ⋅

∑

∑ ∫
 (47) 

Regarding y(s) as a latent variable, we built an auxiliary function 
 

( )

( , ') constant ( ( ) | ( ), ) log ( ( ), ( ) | ') d ( )
s y s

Q V V P y s X s V P X s y s V y s= +∑ ∫  (48) 

which is maximized in each iteration with a series of updating equations. This procedure is 
called “maximum likelihood (ML) estimation”, because it increases the likelihood function 
L(V). 
 Beside the most common ML estimation, in [14], another updating procedure called 
“minimum divergence (MD) estimation” is used. Despite the name, this procedure also 
increases the likelihood function L(V) in each iteration. It is also an EM algorithm but chooses 
a different latent variable than y(s), and its name comes from the auxiliary function which has 
the form of the KL-divergence between two Gaussian distributions. 
 The updating equation of MD estimation is: 

 2
1where ( ),  T

s
JJV VJ E s

S
=← ∑  (49) 

In the above equation, S is the total number of speakers, and 2 ( ) [ ( ) ( ) ]TE s E y s y s=  can be 

calculated according to Eq. (43). J is a lower-triangle matrix called the “Cholesky 
decomposition” of the right hand side. (Some formulas in [14] include another term; it arises 
because [14] also trains the M in the JFA model, but we keep M fixed to the UBM mean.) A 
complete derivation of this updating equation can be found in B. 
 Since MD estimation is only a right-multiplication onto the V matrix, it does not change 
the subspace spanned by the columns of V (i.e. the channel space), but only performs a linear 
combination upon the eigenvoice vectors. [14] describes the advantage of MD estimation as 
“getting good estimates of the eigenvalues corresponding to the eigenvoices”. 
 Most of the code we have seen uses only several ML iterations, but [14] uses 7 ML 
iterations plus 1 MD iteration. In our correspondence with P. Kenny (first author of [14]), 
Kenny claims it is necessary to do the MD iteration in order for the magnitudes of the matrix 
elements to be interpretable. In reality, we found that the MD iteration alters the magnitudes 
of the eigenvoices / eigenchannels significantly. After the ML iterations, the lengths of the 
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eigenvoices / eigenchannels are almost equal; but after the MD iteration, these lengths form 
the shape an exponential function. However, MD iterations did not contribute significantly to 
the objective function nor to the final performance; also, we found that some rows of V and U 
tend to diverge in MD iterations. 
 In our latest experiments we used only 3 ML iterations. We didn’t use MD iterations so 
that we could compare our own implementation with Janus and Alize; we did only 3 iterations 
because we had a better initialization. 
 (4) Estimating x, y, z in speaker enrollment. In Section 3.3.1.3, we showed how to 
estimate these vectors in two steps (Eqs. (32) and (33)). In fact, it is also possible to estimate 
them jointly. The solution, which involves more complicated math, is given in C. The 
two-step estimation is an approximation of the exact joint estimation, but the deviation is 
small enough. 
 The references [16] and [18] introduce a “Gauss-Seidel-like iterative algorithm”, which 
also yields an approximate solution. It has the advantage of being easy to implement. 
However, since we have already implemented joint estimation, we stuck to it in our 
experiments. 

3.3.3 Scoring Methods Special to JFA 

 In [13], a series of scoring methods special to JFA are compared. With the exception of 
full frame-by-frame scoring, all scoring methods are approximate and are based on the 
Baum-Welch statistics. The score of a trial utterance against a target speaker is expressed as a 
function of the Baum-Welch statistics N, F of the trial utterance (calculated against the UBM), 
the supervector m of the target speaker model, and the concatenated covariance matrix Σ . 
Usually this score is adjusted by subtracting the score of the utterance against the UBM. The 
adjusted score is called likelihood ratio (LLR), and will also contain the UBM supervector M. 
 (1) “nox” – no consideration of channel factors 
 A preliminary approximation is to replace the exact frame-average log-likelihood in Eq. 
(7) with the EM auxiliary function, which simplifies to: 

 1
nox

1 1score ( , ) [constant ( )]
2

TX m m F Nm
n

−= + Σ −  (50) 

where X stands for the trial utterance, and n is the length (number of feature vectors) of X. The 
“constant” term does not depend on m. The LLR will be 

 1 1
nox

1 1 1LLR ( , ) [ ( ) ( )]
2 2

T TX m m F Nm M F NM
n

− −= Σ − − Σ −  (51) 

 (2) “intx” – integrating out the channel factors 
 Recall that when training the speaker models, the channel factors x are discarded. This 
means the target speaker supervectors m (as well as the UBM supervector M) doesn’t contain 
any channel factors. Scoring a trial utterance against m effectively ignores the channel factors 
x that were at work in producing X, giving rise to mismatch. 
 Because nothing is known about the channel factors x of X, a wise way to deal with them 
is to integrate x out, using its standard normal prior distribution: 

 1
intx

1 1score ( , ) [constant ( ) ( ( ))] ( ;0,1) d
2

T

x
X m m Ux F N m Ux p x x

n
−= + + Σ − +∫  (52) 
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This works out to 

 1 1 1
intx

1 1score ( , ) [constant ( ) ( ) ( )]
2

T T TX m F Nm UGU F Nm m F Nm
n

− − −= + − Σ Σ − + Σ −

 (53) 

where 1 1( )TG I U NU− −= + Σ . The LLR is just 

 intx intx intxLLR ( , ) score ( , ) score ( , )X m X m X M= −  (54) 

 (3) “pointx” – point estimate the channel factors 
 Instead of integrating out the channel factors x, we can also find a point estimate of x that 
maximizes the posterior probability of X, i.e. maximizes the integrand of Eq. (52). The 
solution is given by 

 1ˆ ( )T
mx GU F Nm−= Σ −  (55) 

Therefore the score function is 

 1
pointx

1 1score ( , ) [consta ˆ ˆ)nt ( ( ( )]
2

T
m mX m m U F x

n
x N m U−= + + Σ − +  (56) 

To calculate pointxscore ( , )X M , another point estimate of x is needed: 

 1ˆ ( )T
Mx GU F NM−= Σ −  (57) 

 1
pointx

1 1score ( , ) [consta ˆ ˆ)nt ( ( ( )]
2

T
M MX M M U F x

n
x N M U−= + + Σ − +  (58) 

The LLR is just 

 pointx pointx pointxLLR ( , ) score ( , ) score ( , )X m X m X M= −  (59) 

 (4) “ubmx” – UBM point estimate the channel factors 

 An approximation is made by replacing ˆmx  with ˆMx . 

 1
ubmx

1 1score ( , ) [constant ( () ( )]
2

ˆ ˆT
M MX m m U F N m Ux

n
x−= + + Σ − +  (60) 

 1
ubmx

1 1score ( , ) [constant ( () ( )]
2

ˆ ˆT
M MX M M U F N M Ux

n
x−= + + Σ − +  (61) 

 1
point

1
x

1ˆ ) ( ) (1LLR ( , ) [( ) ( )]
2M

T TX m m M F NM N x m M
n

m MU N−−= − Σ − − − Σ −−  (62) 

 (5) “linear” – linear approximation of (4) 
 By assuming that m M−  is small, the quadratic term in (62) is dropped, resulting in the 
following linear LLR function: 

 1
linear

1LLR ( , ) ( ˆ )) (T
MX m m M F NM NU

n
x−= − Σ − −  (63) 

 The paper [13] compares full frame-by-frame scoring and the scoring methods (2~5) 
here as follows: 
 In terms of accuracy: 
 Without score normalization, full frame-by-frame is best; intx, pointx and linear 
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come close; ubmx is by far the worst. 
 With ZT-norm, full frame-by-frame, intx, pointx and linear are all similar, with 

pointx and linear reaching the best under some conditions; ubmx is somewhat 
worse. 

 In terms of efficiency: full frame-by-frame is very slow; pointx is a bit slow; the 
other three are fast. 

 Considering both aspects, linear scoring seems to be a best choice. 
 The “nox” scoring method is applicable to GMM modeling without JFA. The linear 
scoring is also applicable, if 0U =  is substituted into Eq. (63). The other three scoring 
methods are not applicable to GMM modeling without JFA. 

3.4 Score Normalization 

 The score of an utterance against a speaker model measures their similarity. However, a 
larger score doesn’t always mean they’re more similar. For example, a speaker model may 
tend to yield higher scores than other models for imposter utterances. In this case, even if an 
utterance scores high against this model, it doesn’t necessarily mean that this is the most 
likely model. Also, an utterance may tend to score higher than other utterances against 
models that do not represent the speaker of this utterance. In this case, the utterance has to 
score even higher against a speaker model to be considered a match. In a word, what matters 
is not the score itself, but rather how much it stands out from the scores of imposter trials. 
Unfortunately the distribution of scores of imposter trials may be different for each model and 
each utterance. This is problematic especially for open-set SID, because we need to set a 
global threshold θ  for all trials. Score normalization is the technique that normalizes the 
distribution of scores of imposter trials, so that a fairer comparison of models could be made 
in closed-set SID, and a global threshold could be set in open-set SID. 
 Two common normalization techniques are zero normalization (Z-norm) and test 
normalization (T-norm). Z-norm normalizes the scores by model: 

 Znorm
score( , )score ( , ) m

m

X mX m µ
σ

−
=  (64) 

where mµ  and mσ  are the mean and variance of the distribution of scores of imposter trials 

against the model m. The imposter utterances are taken from the development data, and the 

parameters mµ  and mσ  can be pre-computed in the training stage. On the other hand, T-norm 

normalizes the scores by utterance: 

 Tnorm
score( , )score ( , ) X

X

X mX m µ
σ

−
=  (65) 

where Xµ  and Xσ  are the mean and variance of the distribution of scores of X against a set of 

cohort models. The cohort models are trained from another set of utterances taken from the 

development data. Since the parameters Xµ  and Xσ  rely on the test utterance, they must be 
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estimated in the testing stage. 
 The two normalization techniques can be applied one after the other, and the compound 
normalization techniques are called ZT-norm and TZ-norm. In ZT-norm, we first normalize 
the scores (of both target models and cohort models) with Z-norm, and then normalize the 
resulting scores with T-norm. In TZ-norm, we first normalize the scores (of both the trial 
utterances and the development imposter utterances) with T-norm, and then normalize the 
resulting scores with Z-norm. In order to ensure that the scores used as references are indeed 
from imposter trials, the cohort set and the development imposter set must not overlap. 
 We studied the effect of score normalization with open-set SID experiments on the 
ROSSI database. The numbers are given in Section 4.2. We found that T-norm improved the 
open-set performance (while not affecting closed-set performance), while the other 
normalizations decreased the performance most of the time. 

4. RESULTS AND DISCUSSION 

4.1 Closed-Set SID Experiments 

 We compare the performance of the most of the acoustic features and 
pre-/post-processing techniques by the closed-set accuracy on the ROSSI database. The 
numbers are shown in Table 2. 
 The naming convention is as follows: The core part of the feature name is the feature type 
and its dimensionality, for example, “MFCC21” means 21-dimensional MFCC feature. If the 
dimensionality is doubled (e.g. MFCC42), then it means delta features are appended. 
Pre-/post-processing techniques are attached to the feature name as prefixes or suffixes. 
“PRE” stands for pre-emphasis, “LP” stands for linear prediction, “CMN” stands for cepstral 
mean normalization, and “GAUSS” stands for short-time Gaussianization. 
 From the table we can see that the features and pre-/post-processing techniques that 
improve the closed-set accuracy include: 
 Multitaper MFCC (especially using 8 multipeak tapers); 
 DSCC; 
 Pre-emphasis and delta features; 
 Short-time Gaussianization. 

Table 2. Performance of Various Acoustic Features and Pre-/Post-Processing 
Techniques, Compared by Closed-Set Accuracy on the ROSSI Database 

Feature 
Set ID 

1 2 3 4 5 6 7 8 Average 
MFCC21_CMN (Baseline) 89 72 63 43 41 40 65 61 59.250 

MFCC42_CMN 86 75 66 43 44 48 65 62 61.125 
PRE_MFCC21_CMN 91 75 62 46 41 38 67 60 60.000 
PRE_MFCC42_CMN 92 77 65 48 48 46 70 61 63.375 
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WMVDR21_CMN 88 74 64 43 40 40 65 62 59.500 
SCF20 63 58 44 17 17 15 44 43 37.625 

SCF20_PCA 65 64 50 20 21 15 47 46 41.000 
MFCC21_CMN + SCF20 75 68 56 30 24 26 57 50 48.250 

MFCC21_CMN + SCF20_PCA 83 68 60 33 26 23 59 54 50.750 
MFCC21_CMN + 

DSCC20_GAUSS100_CMN 
(Compared with MFCC42_CMN) 

82 78 69 48 46 47 66 64 62.500 

Multitaper 
MFCC 

Baseline (1 Hamming) 
– our implementation 89 72 63 43 41 40 65 61 59.250 

Baseline (1 Hamming) 
– Kinnunen’s 

implementation 
88 71 64 50 40 40 63 61 59.625 

4 Thompson 86 70 66 49 44 38 67 63 60.375 
8 Multipeak 90 75 68 50 48 39 64 62 62.000 

8 SWCE 91 75 65 46 48 34 67 62 61.000 

LP_MFCC21_CMN 
(Param = LP order) 

1 86 72 63 43 40 38 65 61 58.500 
2 86 76 64 47 41 39 65 59 59.625 
5 85 75 65 41 31 35 59 62 56.625 
10 83 73 68 37 33 30 59 57 55.000 
15 81 72 65 37 34 31 60 58 54.750 
20 81 71 64 38 33 30 59 57 54.125 

MFCC21_GAUSS 
(Param = window length in frames) 

100 86 74 64 51 42 42 61 64 60.500 
200 88 76 65 55 43 43 62 65 62.125 
300 85 76 66 51 45 43 64 64 61.750 
400 86 75 66 52 44 46 66 62 62.125 
500 85 76 67 54 45 44 68 64 62.875 

PRE_MFCC42_GAUSS 
(Param = window length in frames) 

(Compared with PRE_MFCC21_CMN 
+ DELTA) 

100 89 75 72 54 43 49 66 64 64.000 
200 93 75 72 55 45 50 66 67 65.375 
300 91 76 70 58 45 48 67 65 65.000 
400 93 78 68 56 46 50 68 65 65.500 
500 92 76 68 58 45 47 66 64 64.500 

 
 For the prosodic features HSCC and FFV, and their fusion with the baseline MFCC, we 
evaluated their performance on the four scenarios on the MIXER5 database, also using the 
closed-set accuracy as the criterion. The numbers are shown in Table 3, and the change of the 
performance with the fusion weights is visualized in Figure 6. The improvement of the fusion 
over baseline MFCC is minor, and the fusion weights are hard to explain: in three of the four 
scenarios, FFV, which performs worst alone, has (one of) the highest weights. 
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Table 3. Performance of HSCC, FFV, and Their Fusion with MFCC, Compared by 
Closed-Set Accuracy on the MIXER5 Database 

 VB-YB VL-YL VB-YL VL-YB 
MFCC21 70.43 74.71 59.29 55.43 
HSCC20 38.43 44.14 23.00 23.00 

FFV7 32.29 36.57 10.29 13.71 
Best fusion 74.71 79.86 61.71 56.86 
Best fusion 

weights 
0.39 + 0.03 + 

0.58 
0.35 + 0.05 + 

0.60 
0.47 + 0.06 + 

0.47 
0.87 + 0.04 + 

0.09 
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Figure 6. Fusion of MFCC, HSCC and FFV: How the Closed-Set Accuracy Changes 
with the Fusion Weights 

4.2 Open-Set SID Experiments 

 We conducted extensive open-set SID experiments on the ROSSI database. The variables 
we considered include: 
 Acoustic features: six types of features that investigate the effect of pre-emphasis, 

delta feature, short-time Gaussianization, and multitapers. For short-time 
Gaussianization, we chose a window length of 400 frames which has been shown to 
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perform best for closed-set SID. For multitapers, we used 8 Multipeak tapers. 
 Speaker modeling method and kernel function: we compared GMM speaker 

modeling and SVM speaker modeling; for the latter, we considered all the six kernel 
functions. 

 Score normalization: No normalization, Z-norm, T-norm, ZT-norm and TZ-norm. 
 For each combination of variables, we measured the 4 criteria for each of the 8 sets of the 
ROSSI database. This yielded a total of 6 7 5 8 4 6720× × × × =  numbers, which were too 
many to analyze. Therefore we aggregated the numbers in the following ways: 
 The numbers across the 8 sets are averaged; 
 For the six kernel functions, only the best is reported along with the name of that 

kernel. 
Now there are 6 2 5 4 240× × × =  numbers, which is still quite a lot but can be analyzed. These 
numbers are listed in Figure 7. 
 Figure 7 is made up of five rows and two columns, where each row stands for a type of 
score normalization and the two columns stand for the two scoring methods. Each small table 
has five rows corresponding to features and four columns corresponding to the evaluation 
criteria. In the SVM modeling part, the name of the best kernel is shown alongside the 
numbers. The greener the background is, the larger the number. The maximum number in 
each column of the small tables is highlighted in red. 
 The following conclusions can be obtained concerning the variables we’re interested in: 
 Scoring method: SVM speaker modeling is significantly better than GMM 

modeling. 
 Score normalization: T-norm improves the open-set performance (while not 

affecting closed-set performance), while the other normalizations decrease the 
performance most of the time. 

 Acoustic feature: The best feature for closed-set SID is 
PRE_PEAK8_MFCC40_GAUSS400 (with every technique included). The best 
feature for open-set SID, if we focus on the T-norm, is PRE_MFCC42_GAUSS400. 
Multitapers do not seem to work well for open-set SID. For other score 
normalizations the conclusion may be a bit different, but there’s no doubt that the 
pre-emphasis and delta features should be included. 

 Kernel function: The numbers favor the WBHATT kernel for closed-set SID, and 
the BHATT or GUMI kernel for open-set SID. Experiments that compare the 
performances of different kernel functions show that the PLAIN and KL kernels also 
achieve a similar performance with negligible differences, but the L2 kernel 
performs much worse and can be eliminated. 
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Figure 7. Open-Set Evaluation Results on the ROSSI Database 

4.3 Experiments with JFA 

4.3.1 Toolkits Used in Our Experiments of JFA 

 We implemented everything except frame-by-frame scoring in Matlab. Because our 
results didn’t turn out good for a long time, we also used two toolkits for comparison: Janus 
and Alize. We compared the part of the speaker recognition pipeline after calculating the 
Baum-Welch statistics, including the initialization and training of the V, U, D matrices, 
speaker enrollment, and scoring. 
 Janus refers to the JFA functionality built into the “Janus” speech recognition software of 
our lab, written in C++. It initializes the JFA matrices at the order of magnitude of 1, but also 
supports custom initialization. The training order of the matrices seems to be flexible. The 
enrollment and scoring parts are too slow to be used. 
 Alize [19] is an open source platform for biometric authentication developed by the 
University of Avignon, including the functionality of JFA. It is also written in C++. Like 
Janus, Alize initializes JFA matrices at the order of magnitude of 1 by default and supports 
custom initialization. It must train the JFA matrices in the order of V-U-D. In speaker 
enrollment, Alize first estimates the vectors y and x jointly, then estimates the z vector. The 
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scoring methods offered by Alize include frame-by-frame scoring (either full or fast) and 
linear scoring. 

4.3.2 JFA Experiment Setup and Results 

 In our experiments, we used our own initialization of the JFA matrices (which has been 
found to be superior to the default initialization of Janus and Alize). We compared the training 
of the JFA matrices of our own code and the two toolkits (V-D-U with Matlab and Janus, V-
-U-D with Alize). For speaker enrollment, we used our own code of joint estimation of y, x 
and z. The two-step estimation of Alize doesn’t exhibit much difference from joint estimation. 
For scoring, we used Alize’s fast frame-by-frame scoring (choosing 5 top components) and 
our implementation of the five scoring methods in Section 3.3.3. It has been verified that 
Alize’s implementation of linear scoring produces exactly the same results as our 
implementation. We also implemented SVM modeling and scoring. 
 Because we didn’t get good results, and because the results seem to be sensitive to many 
variables, we used only the PLAIN kernel for SVM modeling and scoring, and didn’t apply 
any score normalization. 
 Below are our latest results (EER) obtained on the sixth subset (telephone train, 
telephone test) of the male trials of the NIST 2008 evaluation. The acoustic feature used is 
RM40. 

Table 4. Comparison of EER of various training methods of JFA matrices and scoring 
methods 

on the sixth subset of NIST 2008 male trials 

 Relevance 
MAP 

JFA with 
Matlab 

JFA with 
Janus 

JFA with 
Alize 

Fast frame-by-frame 14.76 15.66 14.32 15.90 
nox 14.12 15.38 15.10 15.21 
intx 

N/A 
15.34 11.85 15.15 

pointx 15.34 11.86 15.16 
ubmx 15.33 16.70 15.22 
linear 12.93 16.65 12.47 16.70 

SVM (PLAIN 
kernel) 

9.77 11.78 11.78 11.72 

 
 It appears that among the three implementations of JFA, only Janus shows an 
improvement over the relevance MAP baseline (except the case with SVM). Also, the trend 
of the performance of the intx, pointx, ubmx and linear scoring methods agrees with those in 
[13]. However, when we investigated what was the difference of the Janus implementation 
from the others, we found that the U matrix wasn’t correctly trained by Janus: 98 out of the 
100 columns were almost identical. We tried running the enrollment and scoring with only 
some of the matrices V, U, D, and found that it was exactly the “wrong” U matrix that 
produced the low error rates. We tried training the U (or D) matrix directly after training the V 
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matrix with the three implementations, and found that Janus produced different results from 
the other two. The D matrix trained by Janus even contained negative values despite the 
all-positive initialization. This seems to be evidence that the Janus implementation is 
probably wrong, and the good numbers we obtained couldn’t be explained. Also, when SVM 
modeling and scoring are used, we never found a configuration that beat the relevance MAP 
baseline. We suspect that the following two factors might relate to the no success of JFA: 
 1. The database used, and the division of the data. The NIST database is huge, and its 
organization is complicated. It might take pages to exactly specify what data one used for 
what part of the experiments, and sometimes one may even have to provide the file lists. As a 
result, we haven’t been able to replicate the data division of any literature, and it is possible 
that we have run all our experiments on a not so reasonable division of the data. 
 2. Lack of a working configuration of JFA. Although we had access to the source code of 
two toolkits, the source code only contained functions that perform the individual units of 
functionality in JFA, and we had to configure the pipeline (e.g. order of training the matrices) 
on ourselves. In doing so we naturally tended to imitate our own configuration, and if our own 
configuration had been wrong, the toolkits wouldn’t have helped us discover our mistake. 
Even though the toolkits can be useful for debugging the implementation, we might still have 
missed the “correct” configuration.  

5. CONCLUSION 
 During the performance period of this project, we have worked on all the modules of 
speaker recognition systems. At the front end, we have studied a variety of acoustic features 
and pre-/post-processing techniques, and have come up with a PPMD feature that combines 
the benefits of multitaper MFCC, DSCC, pre-emphasis, and short-time feature 
Gaussianization. At the speaker modeling and scoring stages, we have also investigated SVM 
and JFA. We have demonstrated that compared to GMM modeling, SVM modeling and 
scoring are not only better and also faster. We have also shown that T-norm of the scores 
improves open-set speaker identification performance on the ROSSI database.  
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A. DERIVATION OF GMM KERNELS 
 In this appendix we give the derivation of the six GMM kernel functions (PLAIN, GUMI, 
KL, L2, BHATT, WBHATT). The motivation of these kernels can be divided into three 
categories: 
 Defining a “supervector” for each GMM, and using the inner product of the 

supervectors as the inner product of the GMMs (PLAIN); 
 Defining a “distance” measure between GMMs, and deriving an inner product from 

the distance (GUMI, KL); 
 Directly defining an “inner product” on the probability density functions of GMMs 

(L2, BHATT, WBHATT). 
 In the following discussion, we only consider the adaptation of GMM means. The 
covariances and component weights of the adapted GMMs are identical to those of the UBM. 

We shall denote the UBM by ( , , )i i iM wµ= Σ , and the adapted GMMs by ( , , )a
a i i iM wµ= Σ  

and ( , , )b
b i i iM wµ= Σ . 

A.1 The PLAIN kernel 

 The first way of defining a GMM kernel is to define a supervector for each GMM. The 
PLAIN kernel constructs the supervector by concatenating all the component means. The 
resulting kernel function is:  

 PLAIN ( , ) ( ) ( )a T b
a b i ii

K M M µ µ=∑  (A-1) 

This kernel is simple, but one might criticize it for not taking into account the covariance 
matrices. For example, it is reasonable to introduce the covariance matrices in a way similar 
to the Mahalanobis distance: 

 1( , ) ( ) ( )a T b
a b i i ii

K M M µ µ−= Σ∑  (A-2) 

As it turns out, this is the GUMI kernel to be discussed next. 

A.2 The GUMI kernel [A-1] 

 The second way of defining a GMM kernel is to derive it from a distance measure. The 

distance d associated with an inner product ,⋅ ⋅  satisfies 2 ( , ) ,d a b a b a b= − − . If the 

squared distance takes on a form in which the difference of some function of the GMM 

models ( ) ( )a bf M f M−  occurs twice in a multiplicative relationship, then we can define the 

replace them with ( )af M  and ( )bf M  respectively to define a kernel function. The GUMI 



 

Approved for Public Release; Distribution Unlimited. 
 

34 

and KL kernels are two examples. 
 The GUMI (GMM-UBM mean interval) kernel is derived from the Bhattacharyya 
distance of two probability distributions. The Bhattacharyya distance between two 

probability distributions ( )ap x  and ( )bp x  is defined as: 

 Bhatt ( , ) ln ( ) ( )da b a bD p p p x p x x= − ∫  (A-3) 

For two Gaussian distribution (not GMMs) ( , )a a
aN µ Σ  and ( , )b b

bN µ Σ , the Bhattacharyya 

distance is: 

 1
Bhatt

1( , ) ( ) ( ) ( )
8 2

a b
a b T a b

a bD N N µ µ µ µ−Σ + Σ
= − −  (A-4) 

When the two distributions have identical covariance matrices ( a bΣ = Σ = Σ ), the 
Bhattacharyya distance reduces to: 

 1
Bhatt

1( , ) ( ) ( )
8

a b T a b
a bD N N µ µ µ µ−= − Σ −  (A-5) 

For GMMs, however, it is hard to calculate the Bhattacharyya distance. Nevertheless, the 
effect of GMM adaptation manifests itself in a shift of the means of the individual 
components, so it still makes sense if we measure the distance between corresponding 
components.  A GUMI kernel, therefore, is defined for two Gaussian distributions by 
modifying Eq. (A-5) and dropping the constant: 

 1
GUMI ( , ) ( ) ( )a T b

a bK N N µ µ−= Σ  (A-6) 

And the GUMI kernel for GMMs is then defined as the sum of Eq. (A-6) over all components: 

 1
GUMI ( , ) ( ) ( )a T b

a b i i ii
K M M µ µ−= Σ∑  (A-7) 

(In the original literature the GUMI kernel is defined as 

 1
GUMI ( , ) ( ) ( )a T b

a b i i i i ii
K M M µ µ µ µ−= − Σ −∑  (A-8) 

But since the SVM is shift-invariant, the subtraction of the UBM means can be dropped.) 

A.3 The KL kernel [A-1][A-2]  

 The KL kernel is based on the KL divergence of two probability distributions. The KL 

divergence from a probability distribution ( )ap x  to another probability distribution ( )bp x  is 

defined as: 

 KL
( )( || ) ( ) log d
( )

a
a b a

b

p xD p p p x x
p x

= ∫  (A-9) 

Note that this is an asymmetric function. For Gaussian distributions ( , )a a
aN µ Σ  and 

( , )b b
bN µ Σ , the KL divergence is: 
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 1
KL

1( || ) ( ) ( ) ( )
2

a b T b a b
a bD N N µ µ µ µ−= − Σ −  (A-10) 

Note the asymmetry: the KL divergence depends on the covariance bΣ  but not aΣ . However, 
when the two distributions have identical covariances, the KL divergence is reduced to: 

 1
KL

1( || ) ( ) ( )
2

a b T a b
a bD N N µ µ µ µ−= − Σ −  (A-11) 

which is essentially the same as the Bhattacharyya distance (Eq. (A-5)). 
 From this point on we may derive the same kernel function as the GUMI kernel. But the 
authors of [A-2] didn’t want to jump from the KL divergence of GMMs to the sum of KL 
divergences of individual components directly. Instead, they worked out an upper bound of 
the KL divergence of GMMs using the log-sum inequality: 

 KL

1

( || ) ( || )

( ) ( )

a b
a b i KL i ii

a b T a b
i i i i i ii

D M M w D M M

w µ µ µ µ−

≤

= − Σ −
∑
∑

 (A-12) 

where a
iM  and b

iM  stand for the i-th component of the two GMMs. And from this they 

derived the KL kernel function: 

 1
KL ( , ) ( ) ( )a T b

a b i i i ii
K M M w µ µ−= Σ∑  (A-13) 

 It turns out that the sole difference between the GUMI and KL kernel is whether the 
components are weighted. There is some approximation involved in the derivation of both 
kernels, so there is no theoretical justification for either of them. The paper [A-1] says that “in 
various signal selection problems, the Bhattacharyya distance has shown to give better results 
than the KL divergence,” but we still need to do experiments with our own data to see the 
difference in performance. 

A.4 The L2 kernel [A-2] 

 The third way to define a GMM kernel function is to treat GMMs as continuous 
probability density functions, and use a general inner product for continuous functions. The 
L2 kernel makes use of the L2 inner product of  real continuous functions: 

 
L2

( ), ( ) ( ) ( )df x g x f x g x x= ∫  (A-14) 

For two Gaussian distributions ( , )a a
aN µ Σ  and ( , )b b

bN µ Σ  in a D-dimensional space, the 

inner product is: 

 
L2

1

1/2/2

, ( | 0, )

1 ( ) ( ) ( )exp
2(2 )

a b a b
a b

a b T a b a b

D a b

N N N µ µ

µ µ µ µ

π

−

= − Σ +Σ

 − Σ +Σ −
= − 

 Σ + Σ

 (A-15) 

With identical covariance matrices, the inner product is reduced to: 
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L2

1

1/2/2

, ( | 0, 2 )

1 ( ) ( )exp
4(4 )

a b
a b

a b T a b

D

N N N µ µ

µ µ µ µ
π

−

= − Σ

 − Σ −
= − 

Σ  

 (A-16) 

The inner product of two GMMs is: 

 
L2 L2

, ,a b
a b i j i ii j

M M w w M M=∑ ∑  (A-17) 

Under the assumption that non-corresponding components of the two GMMs are situated far 
away so that they do not make significant contribution to the inner product, this is 

approximated to yield the L2 kernel function (dropping the constant term /2(4 )Dπ : 

 

2
L2 L2

2 1

1/2

( , ) ,

( ) ( )exp
4

a b
a b i i ii

a b T a b
i i i i i i

i
i

K M M w M M

w µ µ µ µ−

=

 − Σ −
= − 

Σ  

∑

∑
 (A-18) 

The L2 kernel is somewhat to the radial basis kernel function, because it puts the quadratic 
form in an exponential function. 

A.5 The BHATT and WBHATT kernels 

 The radial basis kernel function has a nice property: because of the positive semidefinity 
of the 1−Σ  matrix, the exponential term is bounded in [0,1]. However, in the L2 kernel, the 

1/2Σ  term breaks this bound. Is it possible to eliminate the latter term? The answer is yes – if 

we use the Bhattacharyya inner product instead of the L2 inner product. 
 In the definition of the Bhattacharyya distance (Eq. (A-3)), the part inside the logarithm 
is also a valid inner product for two continuous functions: 

 
Bhatt

( ), ( ) ( ) ( )df x g x f x g x x= ∫  (A-19) 

Because the geometric mean is smaller than or equal to the arithmetic mean, for two 
probability distributions (whose integral is 1), the Bhattacharyya inner product is bounded in 

[0,1]. The Bhattacharyya inner product for two Gaussians ( , )a
aN µ Σ  and ( , )b

bN µ Σ  with 

identical covariance matrices is: 

 1
Bhatt

1, exp ( ) ( )
8

a b T a b
a bN N µ µ µ µ− = − − Σ −  

 (A-20) 

Similar to the derivation of the L2 kernel, we can derive the weighted Bhattacharyya 
(WBHATT) kernel for GMMs: 

 
1

WBHATT
( ) ( )( , ) exp

8

a b T a b
i i i i i

a b ii
K M M w µ µ µ µ− − Σ −

= − 
 

∑  (A-21) 

Just like the GUMI kernel, one could argue that the weighting of components is unnecessary, 
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and thus we have the unweighted Bhattacharyya (BHATT) kernel: 

 
1

BHATT
( ) ( )( , ) exp

8

a b T a b
i i i i i

a b i
K M M µ µ µ µ− − Σ −

= − 
 

∑  (A-22) 

Both the BHATT and WBHATT kernels are bounded, which is a major difference from the 
other kernels. 
 
[A-1] C. H. You, K. A. Lee and H. Li, “GMM-SVM kernel with a Bhattacharyya-based 

distance for speaker recognition,” IEEE Transactions on Audio, Speech and 
Language Processing, vol. 18, no. 6, pp. 1310-1312, Aug 2010. 

[A-2] W. Campbell, D. Sturim and D. Reynolds, “Support vector machines using GMM 
supervectors for speaker verification,” Signal Processing Letters, 2006. 
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B. DERIVATION OF MINIMUM DIVERGENCE ESTIMATION 
 First we take a quick look at maximum likelihood estimation. The objective function is 
 ( ) log ( ( ) | )

s
L V P X s V=∑  (B-1) 

By choosing ( )y s  as the latent variable (which is a natural choice), we construct an auxiliary 

function: 

 ( )

( )

( , ') constant ( ( ) | ( ), ) log ( ( ), ( ) | ') d ( )

constant ( ( ) | ( ), ) log ( ( ) | ( ), ') d ( )

s y s

s y s

Q V V P y s X s V P X s y s V y s

P y s X s V P X s y s V y s

= +

= +

∑ ∫

∑ ∫
 (B-2) 

Note the change in the term within the logarithm. This happened because (dropping the 
argument s) 

 log ( , | ') log ( | , ') log ( | ')P X y V P X y V P y V= +  (B-3) 

But the (prior) distribution of y doesn’t depend on V’, so the second term gets absorbed by the 
“constant” term (remember that we’re going to maximize Q in terms of V’ only). 

 Now we make an “unnatural” choice about the latent variable – we choose the entire Vy , 

and denote it by a. By imitating Eq. (40), we can write out the auxiliary function: 
 '( , ') constant ( | , ) log ( , | ') d

s a

Q V V P a X V P X a V a= +∑∫  (B-4) 

The meaning of this formula isn’t obvious at first sight. First, the range of a doesn’t cover the 

entire CF-dimensional space, so the probability density function ( | , )P a X V  isn’t 

well-defined. This doesn’t matter, because we can treat the entire ( | , ) ·[ ] d
a
P a X V a∫  part as 

an expectation operator | ,a X VE  over the posterior distribution of a: 

 | ,'( , ') constant [log ( , | ')]a X V
s

Q V V E P X a V= +∑  (B-5) 

Next let’s study the term within the logarithm. We can decompose it in a similar way to Eq. 
(B-3): 

 log ( , | ') log ( | , ') log ( | ')P X a V P X a V P a V= +  (B-6) 

Now look at the first term: when a is given, the distribution of X is determined, and V’ has no 
effect! Therefore this time it is the first term that gets absorbed by the “constant” term. The 
auxiliary function becomes 
 | ,'( , ') constant [log ( | ')]a X V

s
Q V V E P a V= +∑  (B-7) 

 If the range of V’ were different from that of V, then log ( , | ')P X a V  will be zero almost 
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everywhere over the posterior distribution of a, which is meaningless. It is required that the 
range of V’ be identical to that of V, and this is why minimum divergence doesn’t change the 
eigenvoice space. 
 Given that the columns of V and V’ span the same subspace, we can let 'V VJ= , where J 

is a small invertible matrix. Let’s think about what ( | ')P a V  means: it means that a variable 

y’, whose prior distribution is the standard normal distribution, takes a value such that 

' 'V y a Vy= = , which means 'y Jy= . So, if we drop the notation of a and switch to y, the 

auxiliary function will become 
 | ,'( , ') constant [log ( ')]y X V

s
Q V V E P y Jy= + =∑  (B-8) 

This is a cross-entropy from the posterior distribution of y to the distribution of 'Jy . If we add 

the entropy of the posterior distribution of y itself (anyway it doesn’t depend on V’), the 
auxiliary function becomes 

 | ,
log ( ')'( , ') constant
log ( | , )y X V

s

P y JyQ V V E
P y X V

=
= +∑  (B-9) 

which is then the negative of the KL-divergence between the two aforementioned distribution. 
Remember that the prior distribution of y’ is the standard normal distribution. Maximizing the 
auxiliary function is equivalent to minimizing (the sum across all speakers of) the 

KL-divergence from the posterior distribution of y to the distribution of 'Jy  – this is why this 

updating procedure is called “minimum divergence estimation”. 
 In Section 3.3.1.4 we have derived that the posterior distribution of y is (see Eq. (41)): 

 1( ( ), ( ))E s G sN  (B-10) 

And given that ~ (0, )y IN , the distribution of 'Jy  is 

 (0, )TJJN  (B-11) 

The KL-divergence from a k-dimensional Gaussian distribution 0 0 0( , )µ ΣN  to another 

Gaussian distribution 1 1 1( , )µ ΣN , according to Wikipedia, is: 

 ( ) ( )1 1 0
KL 0 1 1 0 1 0 1 1 0

1

det1( ) tr ( ) log
2 det

TD kµ µ µ µ− −  Σ
= Σ Σ + − Σ − − −   Σ  

‖N N  (B-12) 

(The sum of) the KL-divergence to be minimized, dropping the terms that don’t depend on V’, 
is 

 ( )1 1
1 1

1 tr[( ) ( )] ( ) ( ) ( ) log det( )
2

T T T T
KL

s
D JJ G s E s JJ E s JJ− −Σ = + +∑  (B-13) 
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Let 1( )TK JJ −= , and we want to find the matrix K that minimizes this sum of KL-divergence. 

We will take its derivative to K. Here are some formulas of matrix calculus that come in 
handy: 

 1tr( ) ( ) det (adj ) det ( )T T T T TAB B x Ay xy A A A A
A A A

−∂ ∂ ∂
= = = = ⋅

∂ ∂ ∂
 (B-14) 

where adj A  is the adjugate of A. Also, since the matrices we’re dealing with are all 

symmetric, we don’t need to care about the transposes. 

 The derivative of KLDΣ  w.r.t K is 

 

( )

( )

1 1

1

1 1

1
2

1 [ ( )] ( ) ( ) log det
2
1 det( ) ( ) ( )
2 det
1 ( )
2

T
KL

s

T

s

s

D tr KG s E s KE s K
K K

K KG s E s E s
K

E s K

−

−

∂ ∂
Σ = + −

∂ ∂

 ⋅
= + − 

 

= −

∑

∑

∑

 (B-15) 

Set this derivative to zero, and we’ll have 

 1
2

1 ( )T

s
K JJ E s

S
− = = ∑  (B-16) 

By Cholesky decomposition we can find J, and update V by V VJ← . The update formulas 
for D and U are similar. 
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C. JFA SPEAKER ENROLMENT: JOINT ESTIMATION OF x, y, z 
 Analogous to Eq. (32), joint estimation of y, x, z entails calculating 

 1 1 1[ ] ( [   ] [   ]) [   ]ˆ; ; ( )ˆ ˆ T TI U V D N U V D U V Dz Mx y F N− − −= + Σ Σ −  (C-1) 

The hard part of this is the matrix inversion 1 1( [   ] [   ])TI U V D N U V D− −+ Σ . To simplify the 

notation, let [  ]W U V=  and 1S N−= Σ , then the inversion becomes: 

 
1

1( [  ] [  ])
T T

T I W SW W SD
I W D S W D

DSW I DSD

−

−  +
+ =  + 

 (C-2) 

In this formula, W is a tall but think matrix, and D and S are large diagonal matrices. So the 
matrix to be inverted has a huge bottom-right corner that is diagonal. 
 We’ll invert this matrix by row transformations. In the procedure, we’ll introduce more 
letters to simplify the notation. We start with  

 
0

0

T TI W SW W SD I
DSW I DSD I

 +
 + 

 (C-3) 

Multiply the second row with 1( )I DSD −+ , and subtract from the first row TW SD  times the 

new second row: 

 
1 1

1 1

( ) 0 ( )
( ) 0 ( )

T T TI W SW W SD I DSD DSW I W SD I DSD
I DSD DSW I I DSD

− −

− −

 + − + − +
 + + 

 (C-4) 

Let’s look at the top-left block. Remember that 1( )I A −+  can be expanded as 
2 3I A A A− + −  , therefore 

 

1

2 2 2

2 2 2 2 2 2 2 2 2 2

2 1

1

( )
( )

( )
( )
( )

T T

T T

T

T

T

I W SW W SD I DSD DSW
I W SW W SD I DSD DSD SD DSD SD SD DSW
I W S SD S SD SD S SD SD SD S SD SD SD SD S W
I W I SD SW
I W I DSD SW

−

−

−

+ − +

= + − − + −

= + − + − +

= + +

= + +



  (C-5) 

Now let 1( )P I DSD −= + , then we have 

 
0

0

T TI W PSW I W SDP
PDSW I P

 + −
 
 

 (C-6) 

Let TH I W PSW= + , and multiply the first row with 1H − : 
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1 10

0

TI H H W SDP
PDSW I P

− − −
 
 

 (C-7) 

Subtract from the second row PDSW  times the first row: 

 
1 1

1 1

0
0

T

T

I H H W SDP
I PDSWH P PDSWH W SDP

− −

− −

 −
 − + 

 (C-8) 

Now the part on the right side of the dotted line is the inverse of we wanted to find. Its 
computation involves the inversion of two matrices ( I DSD+  and H). The former is a 
diagonal matrix, and the second is small; the computation of both is tractable. 
 We can go on to calculate the estimates of y, x and z: 
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To break this further down, we have: 

 1 1[ ] (ˆ ˆ; ) ( )TH W I SDPD F Nx y M− −= − Σ −  (C-10) 
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We can see that Eq. (C-11) is exactly the same as Eq. (33). That means in both two-step 
estimation and joint estimation, the same formula is used to calculate z when x and y are 
known. However, in joint estimation, the matrix D also comes into play in the estimation of x 
and y. 
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LIST OF SYMBOLS, ABBREVIATIONS AND 
ACRONYMS 

 
BHATT Bhattacharyya (a kernel function) 
CA correct accept 
CDF cumulative density function 
CMN cepstral mean normalization 
CMS cepstral mean subtraction 
CR correct reject 
DSCC delta-spectral cepstral coefficients 
EER equal error rate 
EM expectation-maximization 
F0.5 precision biased correct decision rate (an open-set evaluation criterion) 
FA false accept / false alarm 
FFV fundamental frequency variation 
FR false reject 
GMM Gaussian mixture model 
GUMI GMM-UBM mean interval (a kernel function) 
HMM hidden Markov model 
HSCC harmonic structure cepstral coefficients 
IROSIS integrated robust open-set speaker identification system 
JFA joint factor analysis 
KL Kullback-Leibler (divergence, also a kernel function) 
L2 a kernel function 
LLR log-likelihood ratio 
LMS least mean squares 
LP linear prediction 
MAP maximum a posteriori 
MD minimum divergence 
MFCC Mel-frequency cepstral coefficients 
MHEC mean Hilbert envelope coefficients 
ML maximum likelihood 
NIST National Institute of Standards and Technology 

PPMD 
PRE_PEAK8_MFCC20_GAUSS300 + 
PRE_PEAK8_DSCC20(GAUSS300)_CMN (an acoustic feature) 

RASTA relative spectral (filtering) 
RM40 an acoustic feature 
ROSSI robust open-set speaker identification 
SCF spectral centroid frequency 
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SCM spectral centroid magnitude 
SE speaker error 
SID speaker identification 
SNR signal-to-noise ratio 
SRE speaker recognition evaluation 
SVM support vector machine 
SWCE sine-weighted cepstrum estimator (a type of multitapers) 
UBM universal background model 
VAD voice activity detection 
WBHATT weighted Bhattacharyya (a kernel function) 
WMVDR warped minimum variance distortionless response 
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